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Abstract

An elegant, generic solution is presented to the problem of point-to-point control by a single actuator of a remote load

through an intermediate flexible system, modelled by a system of lumped masses and springs. It is based on new ways of

looking at the problem that respect and exploit the underlying dynamics. Under wide-ranging conditions the strategy

allows rapid, almost-vibrationless, precise position control of the load, independently of the order of the system, without

the need for a detailed system model or ideal actuator. During the start-up, the system itself reveals to the controller how to

terminate the motion, so that the real system also acts as the model for the controller. The scheme is very robust to

modelling, actuator and sensor errors. The strategy is presented, with some of the motivating ideas reviewed.

r 2006 Published by Elsevier Ltd.
1. Introduction

From space structures to disk drive heads, from medical mechanisms to long-arm manipulators, from
cranes to robots, there are many contexts in which it is desired to achieve rapid and accurate position control
of a load (or system end-point) by an actuator that is separated from the load by an intermediate flexible
system. While all systems are to some extent flexible, issues related to flexibility become decisive when
designing lighter mechanisms, or more dynamically responsive systems, or deliberately softer devices, or more
energy-economical systems, or devices which are long in one direction relative to the other dimensions.

The system’s actuator must then attempt to reconcile two demands, namely, position control and active
vibration damping. Somehow each must be achieved while respecting the other’s requirements. Previous
approaches to controlling such flexible systems have included various classical and state feedback control
techniques (often using simplified dynamic models); modal control (often considering a rigid-body or zero
frequency mode separately from vibration modes); linear quadratic optimal control; sliding mode control;
input command shaping; bang–bang control; wave-based control; and control based on real-virtual system
models. Each method has special characteristics and drawbacks, discussed in Ref. [1–19]. None is completely
satisfactory under all headings: some techniques control (or inhibit) only a few modes, or just one; some
require a very good system model or are otherwise highly system dependent; some are not robust to timing or
modelling errors or to actuator limitations. Much effort has been expended trying to refine or improve each
ee front matter r 2006 Published by Elsevier Ltd.
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method, or to mitigate some significant disadvantages, with differing degrees of success. Ref. [19] observes that
‘‘to date a general solution to the control problem [of flexible structures] has yet to be found. One important
reason is that computationally efficient (real-time) mathematical methods do not exist for solving the
extremely complex sets of partial differential equations and incorporating the associated boundary conditions
that most accurately model flexible structures.’’

This paper presents a new approach that avoids most of the shortcomings in previous approaches and offers
precisely a ‘‘general solution’’ that has long been sought, one that is applicable to a large class of problems.

2. The problem

The main focus of this paper is the arrangement shown in Fig. 1. A rectilinear mechanical system of lumped
masses and springs is controlled by a single actuator at one end, with the ‘‘load’’ (or simply an end-mass) at the
far end. The control problem is primarily kinematic rather than dynamic: to determine the best way to move the
actuator, x0(t), so as to manoeuvre the end mass, at xn, from rest in one position to rest in a new, target position.
It is assumed that the final displacement of the end mass is equal to the final displacement of the actuator, so that
if, for example, gravity is relevant, its net effect is identical at the beginning and end of the motion.

Although relatively simple in form, the arrangement in Fig. 1 exemplifies most of the inherent challenges in
the problem and can be used to model many real systems. It is therefore a good starting point and test case.
Note also that distributed systems are not excluded, because by choosing the number and value of the lumped
parameters in Fig. 1 the dominant modal shapes and frequencies of a continuous system can be matched and
thereby its essential dynamics and control also investigated. In any case, the solution to be presented applies
also to distributed systems: in fact the wave ideas behind the proposed controller are actually more clear-cut
when the systems are distributed.

Note that the controlled input is position rather than force, suggested in Fig. 1 by the form of the actuator
at the left. Such a ‘‘kinematic’’ input is appropriate for many positioning applications (from disc drives to
robotics) where supplying the force is not the main issue. The wave-based control ideas presented below apply
to either position or force control. One cannot attempt to control both position and force at the input directly
and simultaneously: one must choose one, and the system dynamics will determine the other. But the focus of
the present paper will be on position input only. It is assumed that the actuator has its own position sensor and
sub-controller that works over time, more or less rapidly, to set x0(t) to the value requested by the main
control system, with zero steady-state (final value) error. It is implicitly assumed that it can supply the needed
force. The main controller needs to know nothing of the details of this actuator sub-controller.

The control strategy for the simple system in Fig. 1 later proves applicable, with little or no adaptation, to a
very broad class of problems. For example, the same strategy works for an arbitrary number of masses and
springs; or when the load mass varies between manoeuvres (perhaps in an unknown way, as can happen for
example in robotics); or when the system has distributed components or is predominantly distributed in
nature; or with arbitrary internal damping (modelled e.g. as dashpots interconnecting any or all masses); or
when the masses and springs remote from the actuator change in values; or when nonlinearities arise in the
spring and damping characteristics. One strategy serves all cases, and does so remarkably well.

3. Notional separation of actuator motion into two components

The new control strategy involves separation of the actual actuator motion, x0(t), into two notional

components, a0(t) and b0(t). Thus, formally

x0ðtÞ ¼ a0ðtÞ þ b0ðtÞ. (1)
x0 x1 xi xn

mi

ki ki+1
m1 mn

k1

Fig. 1. The representative flexible system, with x0 attempting to control xn.
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In a way to be explained below, the controller will specify a0(t) as an input component while determining
b0(t) as a measure of the system response that gives a feedback-like component. It then adds the two
components to specify the total input to the actuator, according to Eq. (1).

In this context exactly how a0 and b0 are defined is, to a small degree, arbitrary. Three formulations for a0
and b0 will be presented below (Section 4). Although not identical they are similar and lead to similar control
performances. For the purposes of the control problem, these formulations could be accepted simply as
definitions of a0 and b0, postulated rather than proven, and as such they require no derivation or theory.
Nevertheless, some introductory and motivating arguments seem appropriate.

The variables a and b depend to some extent on the idea of ‘‘waves’’ imagined propagating leftwards and
rightwards in the flexible system such as Fig. 1. The concept of waves in lumped systems is initially
problematic, particularly if the system order is low. In lumped systems all components react immediately and
continuously with all other components and many conventional wave concepts, featured in distributed
systems, no longer apply. To address this possible concern two illustrative background approaches are offered.
The first is more formal, based on operators, leading to ‘‘wave transfer functions’’ in the s-domain. The second
is more physical, based on relating the real system to notional systems in which travelling ‘‘waves’’ are more
identifiable. Neither presentation is intended to be rigorous or comprehensive. The background ideas are
topics for further papers now in preparation.

3.1. Operator approach to mechanical wave analysis

One can begin by assuming the validity of the concept: that is, assume that the motion of each mass in Fig. 1
can indeed be expressed as the superposition of two notional wave components

xi ¼ ai þ bi, (2)

where ai is the component of the position, xi, of the ith mass, associated with a rightwards propagating wave,
and bi is the component associated with the leftwards wave. In other words, the ai motion component is
associated with motion initiated somewhere to the left and travelling from left to right, as if in a ‘‘one-way’’
system (that is, as if in an imaginary system extending indefinitely to the right). If so, this component motion
will be related somehow to the corresponding rightwards component motion in the previous mass to the left.
Assume this relationship can be described by some kind of operator Ri(U) so that

ai ¼ Riðai�1Þ. (3)

Similarly, the bi component is assumed to be associated with a leftwards wave and will be related to the
corresponding component of the next mass to the right, or

bi ¼ Liðbiþ1Þ, (4)

where again Li(U) is an operator.
The proposed operators Ri(U) and Li(U) defined in part by Eqs. (3) and (4) are a formal expression of the

wave postulate. If the postulate is valid, then the operators will have certain features that help define them
more completely. Firstly, if the system response must be given by the superposition of ai(t) and bi(t), then the
superposed motion should obey the differential equations of motion of the system

ki½ �xi�1 � ki þ kiþ1 þmiD
2

� �
xi þ kiþ1½ �xiþ1 ¼ 0, (5)

when the substitutions of Eqs. (2)–(4) are made. Also the two component motions, present in the same system,
should obey the same differential equations of motion. So, for example, for the rightwards wave beginning at a
mass i�1, the operators should be such as to satisfy the equation

ki½ �ai�1 � ki þ kiþ1 þmiD
2

� �
Ri�1ðai�1Þ þ kiþ1½ �RiðRi�1ðai�1ÞÞ ¼ 0. (6)

Finally, the system boundaries will impose further constraints on the nature of the operators Ri and Li.
It transpires that these constraints define major features of the operators: the steady state gain should be

unity; the instantaneous response should be zero; the dynamic response described by the operators should be
close to damped second order, with the dominant frequency close to O(ki/mi) and the phase lag increasing
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from zero to p with frequency. But within such constraints slightly different operators, and so different wave
models, can perfectly model the dynamics of the lumped system when the ai and bi are superposed (Eqs. (2)
and (5)).

Under any valid choice of model, the motion of the first mass, x1, can be expressed as

x1 ¼ a1 þ b1 (7)

¼ R1ða0Þ þ L�11 ðb0Þ, (8)

where L1
�1(U) is an operator going one mass to the right for the leftward-going motion component, bi.

If it is further assumed that R1 and L1 are symmetrical, that is, that one is the inverse of the other, then
applying R1 to Eq. (8) gives

R1ðx1Þ ¼ R2
1ða0Þ þ b0. (9)

Combining this with Eq. (1) gives

a0 � R2
1ða0Þ ¼ x0 � R1ðx1Þ. (10)

From this equation, if R1(U) is assumed, or is known, and x0 and x1 are taken as known or measurable
inputs in the physical system, a0 can be determined, at least implicitly. Then b0 follows from Eq. (1).

In the Laplace domain the operators can take the form of transfer functions. For the special case of a
uniform string of masses and springs, the ambiguity in the wave model can be removed by assuming that all
the operators (transfer functions) are equal and that this operator corresponds to the transfer function
between two masses in an infinite mass–spring string:

GðsÞ ¼ 1þ 1=2
s

on

� �2

� 1=2
s

on

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s

on

� �2

þ 4

s
(11)

with

on ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
(12)

and k is the spring stiffness and m the mass [11]. For reasons of causality, the negative sign should be chosen,
ensuring that the transfer function remains finite at large frequencies and that the phase is lagging, as it
must be. The frequency response G(jo) confirms that this ‘‘wave transfer function’’ exhibits the features
described above.

The non-uniform case is more complicated and the exact wave transfer functions become more complex.
Nevertheless, they retain the main characterizing features, and excellent results are still obtained if the system
is considered locally uniform, with local stiffness, ki, and mass, mi used in determining G in Eqs. (11) and (12).

3.2. Physical model approach

The second motivating approach involves imagining the real system to be expanded and ‘‘broken out’’ into
new, notional component systems, with ai(t) and bi(t) then identified with motions in these notional
component systems.

3.2.1. Wave components physically separated

Fig. 2 shows the original system, Fig. 1, with a second, mirror-image system appended. The load (or end)
masses of the two systems are imagined joined to form a single mass which is therefore double the original
load, with a single displacement. The rest of the second system (with primed displacement variables) is
identical to the first, but in reverse order, ending in a second actuator which is an image of the first. The
motion of this image actuator, indicated by x0, is assumed to follow that of the first actuator exactly, in the
sense that if at any instant the first actuator is moving to the right, the second is also moving to the right at
the same speed.

Now if the equal motions of the two actuators in Fig. 2 are made identical to that of the actuator in the
original system, it is readily shown that the response of the left hand side of the combined system in Fig. 2 will
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Fig. 3. Two perfectly symmetric systems assumed superposed to produce the displacements in Fig. 2. Thus ai+bi ¼ xi, i ¼ 0,1,y,n.

‘‘Waves’’ move from actuator to BC in both cases: i.e., in the second system, from right to left, the arrows indicating only reference

directions for displacement.

x0 x1 x2

x0
x '1x '2xn=x'n

Fig. 2. Original system (left) with mirror-image system appended (right). If the displacement of the mirror-actuator (right) follows the

original actuator x0 then the primed displacements will equal the unprimed.
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be identical to that of the original in Fig. 1. In other words, the addition of the mirror system has no net effect
on the motion of the first system.

Taking a further step, it is postulated that the system in Fig. 2 can in turn be considered as the superposition
of two such double systems, each a mirror (or reversed-order) image of the other, as depicted in Fig. 3. In
other words, the motion of each component in the original system will be given by the sum of the
corresponding motions in the two systems in Fig. 3.

Now in the upper system of the pair in Fig. 3, ‘‘disturbances’’ of some kind (here loosely called ‘‘waves’’),
with oscillating displacements, velocities, energies and momenta, can be considered as entering the system
from the left-hand actuator. With appropriate boundary conditions BC, these will sooner or later leave the
system to the right, having undergone more or less dispersion.

The opposite happens in the lower system in Fig. 3. The ‘‘waves’’ enter at the right and leave at the left.
They cause the same net displacements as in the upper system, because the two actuators are specified to move
simultaneously in the same direction, one pushing where the other pulls.

Understood in the lax sense of the previous paragraphs, the upper system can be considered to have ‘‘one-
way’’ waves travelling left to right, the lower system having similar ‘‘one-way’’ waves travelling right to left,
albeit dispersing as they go. These ‘‘waves’’ correspond loosely to the component motions ai and bi.

The notional ‘‘break-out’’ process (Fig. 1 through Fig. 3) can now be reversed. The two systems in Fig. 3
can be superposed, ensuring identical motion of each end, as required on reaching Fig. 2. Then the superfluous
mirror system in Fig. 2 can be suppressed to get back to the real system in Fig. 1. By this device, the real
system’s motion in Fig. 1 can now be considered as the superposition of rightwards- and leftwards-going
‘‘waves’’, described by (or made separable and definable by) comparison with the separate, independent
motions of the left-hand parts of the two systems of Fig. 3.
3.2.2. Wave-absorbing boundary conditions

For wave-based control, the notional secondary actuators BC should absorb vibrations out of the
intermediate system caused by the primary actuators’ motion: that is, they should provide damping.
Furthermore they should not constrain the final position of the system: that is, if the actuators’ motion
approaches a steady value (e.g. a constant displacement, or velocity, or acceleration), the steady-state motion
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of BC should eventually approach the same value. Within these constraints many choices of BC are workable,
leading to slightly different definitions of ai and bi.

Any boundary acting as a passive, viscous damping will satisfy the general constraints. A good choice of
viscous damping constant isO(km) where k and m correspond to the last spring and mass (which are the same
as the first). It is conjectured that the ‘‘best’’ choice (giving fastest vibration damping) of BC for a long system
is one which mimics a continuation of the string to infinity, beginning with a mirror image of the real system
about the free end and repeating periodically. Waves launched at the actuator (causing both vibratory motion
and perhaps a net displacement, or DC component) will then pass out of the system at the boundaries, never
to return. In other words, the boundary condition maximises energy extraction and minimises energy
reflection by minimising the dynamic impedance mismatch at the boundary. It also allows an arbitrary net
displacement.

3.2.3. Fig. 1 considered as superposition

When the ‘‘break-out’’ process from Figs. 1 to 3 has been reversed, the motions of the two primary
actuators and those implicit in the boundaries, BC, in Fig. 3 become incorporated into the (single) real
actuator’s motion in Fig. 1. The actuator in the real system, Fig. 1, can therefore be considered to be doing at
least two jobs, seen more clearly in the left-hand sides of the notional component systems. Firstly it initiates
motion, or launches a wave from the actuator into the system, from left to right. Secondly, it terminates the
motion, or absorbs the wave returning from right to left. From another perspective, the first job corresponds
to ‘‘pushing’’ the flexible system to start its motion, while the second motion, superposed on the first,
corresponds to the actuator’s being ‘‘pulled’’ by the response of the system in such a way as to dampen
vibration.

But to achieve this dual action, the actuator’s control system needs to be able separately to identify the
notional component waves present at the actuator, that is, a0 and b0, by taking measurements in the physical
system of Fig. 1.

4. Identifying a0(t) and b0(t) in the physical system

Three definitions, or methods of establishing, a0(t) and b0(t) within the real system, will now be presented.
As already noted, they can be taken either with or without reference to, or dependence on, the ideas of
Section 3 above. From here on, a and b (with or without explicit time dependence) will mean a0(t) and b0(t),
and capital letters will indicate the corresponding Laplace-transformed variables. Subscripts are not needed
because the focus will be on resolving only the actuator’s motion, x0(t), into two components.

The first approach is expressed in terms of transfer functions. The s-domain versions of a(t) and b(t) are
given by

A ¼ X 0
1

1� G2
� X 1

G

1� G2
, (13)

B ¼ X 0 � A, (14)

where G is defined by Eq. (11), using the first spring and mass values in Eq. (12).
While this first formulation is conjectured to be the ‘‘best’’ (at least for long, uniform systems), it gives rise

to practical problems. It is very challenging to get the required time-domain values a(t) and b(t) from these
equations as they stand. Ref. [11] solved the problem by using convolution with an impulse response
corresponding to the time domain version of G(s), truncated in time. This is computationally expensive and
slow (although it remains a further option, in addition to those presented here).

A more practical approach is now presented, which will constitute the second option. It involves
reformulating Eq. (13), as follows:

A ¼ X 0 � GX 1 þ G2A ¼ X 0 � GðX 1 � GAÞ (15)

with B from Eq. (14) as before. The required variable A is now implicit in Eq. (15) (appearing on both sides).
But because the transfer function G on the right-hand side has zero instantaneous response, the time
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Fig. 4. The control system. a(t) and b(t) are the notional components of x0(t). The box executes the algorithm listed in Fig. 7 and

portrayed in Fig. 6. For an ideal actuator, x0(t) ¼ c(t).

x0 x1

c= km

m

k

Fig. 5. A simple analogue for Ĝ (input x0 and output x1) for Fig. 4, with the k and m corresponding to the first spring and mass in Fig. 1.
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implementation of this equation works perfectly well when a ‘‘one-time-increment-old’’ version of A is used on
the right hand side, or when incorporated into a classical control arrangement in block diagram form, as in
Figs. 4 and 13.

The wave transfer function G is not easily implemented exactly, especially in real time. If it were possible, an
analogue of G could be obtained by making computer models of Fig. 1 extended ‘‘to infinity’’. The function
input would then become the position of the actuator x0, and the output, G(x0), would be x1 in the model. In
practice, the essential requirements are met by the response of much simpler systems, even down to a one-
degree-of-freedom model such as Fig. 5. Two such analogues, denoted Ĝ, are needed to evaluate continuously
the time domain equivalent of two G terms in Eq. (15).

A third option, computationally the least demanding, determines a(t) and b(t) simply as (in each case) either

aðtÞ ¼ 1=2 x0ðtÞ þ

Z
f ðtÞ

Z
dt

� �
¼ 1=2 x0ðtÞ þ on

Z
x0 � x1ð Þdt

� �
, (16)

bðtÞ ¼ 1=2 x0ðtÞ �

Z
f ðtÞ

Z
dt

� �
¼ 1=2 x0ðtÞ � on

Z
x0 � x1ð Þdt

� �
, (17)

where f(t) is the force at the actuator, acting in the first spring, and Z is an impedance value of O(km),
corresponding to the first spring stiffness, k, and first mass, m. This option also meets the control
implementation requirements and works surprisingly well when incorporated into the control systems.
Depending on which of the two forms is used, the second measured variable will be force, f, or position x1.
5. Further preliminary ideas

Any of the above definitions of a(t) and b(t) can be taken for what follows. It will be assumed for the
moment that the actuator is ideal (a zero order, unity gain response), achieving the position x0(t) in zero time
when requested to do so by the controller.
5.1. At rest, launch and absorbed displacements are equal

For rest to rest manoeuvres, in the absence of extraneous forces, when the system comes to rest again, say at
final time tf, the final values of a(tf) and b(tf) will equal each other, and they will each equal 1

2
x0(tf). Or, putting



ARTICLE IN PRESS
W.J. O’Connor / Journal of Sound and Vibration 298 (2006) 1001–10181008
it the other way around, if one ensures that, for times beyond some time tf,

aðtÞ ¼ bðtÞ ¼ 1
2x0ðtÞ ¼ constant 8t4tf , (18)

one has thereby also ensured that the entire system, including the load at xn, is at rest at this time, at a final
constant displacement of x0(tf). In words, at steady state the net displacement due to absorbing the return
wave is equal to that due to the launch wave. This result is independent of how x0 attained its final value, that
is, it is independent of the time history of a(t) prior to t ¼ tf. It also applies to all the definitions of a(t)and b(t)
introduced above.

This result, Eq. (18), is implicit in the condition that, in the absence of other external forces, the integral of
the actuator force on the system in going from rest to rest must be zero. For example, if the wave definitions in
Eqs. (16) and (17) are used, and x0 set to a constant with the integrals set to zero, Eq. (18) follows. When the
waves are defined using G, the argument is more subtle, but the same result can be derived. With reference to
the approach in Section 3, if the upper system in Fig. 3 moves from rest in one position to (eventual) rest in a
new position, say, 0.5m to the right, the lower system will do the same, so that when the motion of the two
systems is superposed, there will be a net, rest-to-rest motion of 1m.

5.2. Component b(t) also dampens vibration and lags a(t)

Eq. (18) assumes that all motion has ceased, including vibrations. If a(t) is held steady, while the calculated
motion b(t) is superposed to produce the actuator motion x0(t), the b(t) component will have the required
effect of damping out all vibratory motion and ensuring stability. This can be seen, for example by
differentiating Eqs. (16) and (17) with respect to time, where the effect of superposing b in x0 is to introduce a
viscous damping velocity component 1

2
f(t)/Z in the motion of x0. The more dynamic boundary conditions,

based on the G(s) definitions of a and b, achieve damping even more effectively. A more physical insight can be
obtained from Fig. 3, where the effect of the b(t) component in x0(t) is to model the boundary condition, BC,
which is designed to absorb vibration continuously.

A second feature of b(t) is that it will always lag any assigned value of a(t) by a finite time. This can be seen,
for example, by applying the initial value theorem to G(s) or to Ĝ(s), or, if using Eqs. (16) and (17), by
assuming a jump in the acceleration of x0 which can be shown to leave b instantaneously unchanged. The
delay is always significant, and, the longer and more flexible the system, the greater it is. Thus the controller
has no practical difficulty in setting the input to the actuator to be the sum of a+b, because it can change a as
rapidly as desired (and therefore x0) without having instantaneously to change b as well. Also, initially x0 is
simply a. As noted, this delay also make Eqs. (10) and (15) effectively explicit.

To summarise so far: the assigned motion, a, pushes the system. In the process of simultaneously adding in b

(the system response which is delayed with respect to a) the system, through the controller, pulls the actuator.
But it does so ‘‘gently’’, with just the right amount of ‘‘give’’ to dampen or absorb the vibrations actively.
Furthermore, if the push from the a component moves the system a given distance and then holds, the process
of adding b eventually doubles the total distance moved while bringing the system to rest. These ideas provide
the key to combining position control and active vibration damping. Control systems based on these ideas give
great results. But there is one further refinement, based on another discovery, which can if desired provide a
small additional improvement to the control performance.

5.3. The ‘‘best’’ launch wave, a0(t)

The form of a chosen by the controller is arbitrary, provided only it has the correct final value. A step, or
ramp or even a parabola, up to the desired final value (1

2
target), are fine and work very well, as will be seen.

But the very arbitrariness gives scope for even further refinement.
One might guess that the ‘‘best’’ final shape of a(t) would involve maximising the final deceleration so as to

tend to minimise the transit time. Thus, whereas at the start-up the actuator did its best, in the circumstances,
to get the load moving, now it needs to do the opposite in the same circumstances. These ‘‘circumstances’’
include the actuator limitations, the load inertia, and, above all, the flexible nature of the intermediate



ARTICLE IN PRESS
W.J. O’Connor / Journal of Sound and Vibration 298 (2006) 1001–1018 1009
dynamics that decouple actuator and load. This suggests trying to replicate a time reversal of the start-up, as
the best target-arrival performance that is physically possible.

It turns out that, fortunately, precisely the information needed to do this is contained in the system
response, b(t), from start-up, which can be recorded easily.

The idea is conveyed in Fig. 6. The controller sets the launch part of the actuator’s motion, a, to
grow with time, perhaps as a ramp. (Neither the shape nor the slope are critical.) Meanwhile, and
throughout, b is determined by knowing x0 and observing x1 (or f) and using one of the methods described.
The controller adds b to a to determine the actual actuator motion, x0. It also stores the values of b

over time.
At some point, denoted t ¼ t1, the actuator’s current position, x ¼ a+b, will equal half the target distance

(here taken as unity). At this point the launch wave, a, is short of its ultimate value (in this case 1
2
) by the

current value of b. The controller then completes the launch wave a by ‘‘playing back’’ the value of b it has
recorded up to this point, in reverse, and inverted. This ensures that when the playback has got back to
the earliest value of b (which is always zero), the final value of a will be steady at its correct value (1

2
). This

also means that b must reach its correct final value (1
2
), and so the entire system including the load will stop

at the target.
But more importantly (assuming enough of b has been recorded by the changeover time t1), on arrival

at target, the load will stop dead. In fact, the load lands at the target first, stops, and remains stationary
while the rest of the system completes the manoeuvre, with the actuator coming to rest last of all. Thus,
having strained the system to cause the load to stop on target, by a slight deceleration, the actuator then
continues to move to allow the flexible system to ‘‘unwind’’ or ‘‘relax’’ in just the right way, leaving the load
undisturbed. The perfection of this action, easily achieved, is a delight to observe in simulation and in
experiment.

How much echo has been recorded when t1 is reached depends on the actuator launch speed, a, the
manoeuvre length, and the length of the flexible system. Of these, a is completely controllable, and, if
necessary, can be reduced to ensure that sufficient echo has been received at t1 to allow vibrationless arrival at
target. On the other hand, if a is set to grow at the maximum rate possible, regardless, the control system still
works splendidly. The only price is a small initial overshoot (typically 5%) and then some small residual
vibration on arrival at target, which quickly decays to zero. See Fig. 9, where the effect of different launch
speeds, da/dt is illustrated.
 0 t

0

½

1

t1

Fig. 6. The notional separation and recombination of displacement x (heavy line) by way of a and b (light lines). Target distance is 1. a is

set by the controller as a ramp i.e., a ¼ 1
2

vmax � t;, until t ¼ t1 (when x ¼ 1
2
) then as a replay of previous b, but inverted, i.e. a ¼ 1

2
–b(2t1–t)

(shown dotted). At all stages b is determined from the system response. Actuator, x: a(t): b(t):——replay: .
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6. The control system algorithm

The strategy conveyed in Fig. 6 does not allow presentation in classical control form. Fig. 4 instead shows a
box that executes the corresponding algorithm. It takes a(t) and b(t) as inputs (determined by any of the
methods) and produces the actuator position request, c(t), as output. Two further inputs are the target
displacement, xtrgt, and a maximum actuator velocity, vmax. The essence of the algorithm to be evaluated at
each time step, t, is as in Fig. 7. The variable r(t) is the assigned actuator input before superposing b(t). For an
ideal actuator, r(t) ¼ a(t), and x0(t) ¼ c(t). (The issue of non-ideal actuator response will be considered briefly
below.) Lines 1–10 determine r(t), for all stages, and line 11 adds b(t), again for all stages.

Going through the code, in stage 1, a growing displacement r(t) (here a ramp, the time integral of 1
2vmax, line

2) is launched into the system until the accumulated echo is sufficient to get the launch position to half the
target position, at which point (stage 2, line 6) the echo is played back (or strictly speaking, the final value
minus the echo reversed in time). In case the response is not perfect, perhaps due to poor actuator response,
and to remove any residual vibration, the algorithm ends by implementing the arrangement described below in
Fig. 13 (line 9 with line 11). The ‘‘stage’’ variable (lines 1 and 7) is merely to avoid re-entering the first phase
once completed, due to possible small variations in a(t) and b(t). It is not always necessary.

The entire control system shown in block diagram form in Fig. 4, including the analogues for Ĝ, would in
practice be modelled within the same controlling computer. So the feedback inputs to the controller will then
be x0(t) and x1(t) measured on the real system.
7. Sample results

Fig. 8 shows the performance of this algorithm applied to a numerical model of a uniform three-mass
system. The actuator and end-mass positions are shown against time expressed in units of the period, T, or
2pon. The target displacement is 1m. Also shown are a(t) and b(t).

As can be seen, the response is impressive. The load (end mass) is translated from rest to rest, in a single,
controlled movement, with almost no overshoot and with negligible oscillations (and so little or no settling
time). Depending how strictly one defines the settling time, the total manoeuvre time is between 3 and 3.5
‘‘periods’’ of on, This corresponds to about only 1.5 periods of the fundamental mode of the 3-mass system,
which is rapid indeed.

The end mass (or load) comes to rest exactly at target, to an accuracy corresponding to that of the actuator
position sub-controller. Significantly, it does so sooner than the actuator that is controlling its motion,
remotely. Around mid-manoeuvre, the speed of the end-mass (its slope in Fig. 8) is close to that of the
actuator: the flexible system is then behaving as if rigid, or almost so. The accuracy of the final load position is
limited only by the accuracy of the actuator’s final position, which generally can be very high.

Throughout the motion the actuator’s movements are smooth and easily achievable, with no necessity to
achieve high jerk or even high acceleration. The actuator acceleration can be explicitly limited to realistic
values without a noticeable degradation in the overall response. The overall control strategy accepts whatever
1 IF  a(t)+ b(t) < ½ xtrgt … Still in 1st launch stage?
AND stage=1 Without having left it?

2  r(t) = ∫(½ vmax)dt Assign i/p (launch) position
3  echo(t) = b(t) Record echo b(t)
4  t1 = t t1 marks end of 1st stage 
5 ELSE IF (2t1-t)>0 Not yet run out of echo?
6 r(t) = ½ xtrgt 

-echo(2t1-t) 
Set i/p = final value minus 
time-reversed echo 

7  Stage=2 Avoids re-entering stage 1 
8 ELSE End of echo?
9 r(t) = xtrgt – a(t) Set i/p as in Fig.11 
10 END 
11 c(t) = r(t) + b(t) For all i/p “cancel” b(t)  

Fig. 7. Algorithm executed by the computer in Fig. 4 for rest to rest motion. a(t), b(t) are determined outside this algorithm for each time

step t, by any of the methods described. The variable stage is initialised to 1 outside the control loop. xtrgt and vmax are specified elsewhere.
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Fig. 8. End point (heavy line) of a uniform, three-mass system, moved 1m. End point: Actuator: a(t):—— b(t): ??.
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the actuator can manage and works within this to reach its goal. The symmetry of the motion also helps the
self-compensation of any non-ideal actuator responses.

The variable vmax acts as a speed control and sets the slope of a(t) and therefore the speed limit of the
response for the main part of the motion. In practice, the actuator ‘‘speed limit’’ may not be a constraining
factor. In this case vmax can be considered a variable that allows a classical control trade-off, to suit the
application, between, on the one hand, the end-mass rise-time, and, on the other, the degree of overshoot and
settling time. Fig. 9 shows some examples for a uniform three mass system of the effect of different vmax values
(and therefore a(t) rise rate).

Setting vmax very high shortens the rise-time. But even in the ‘‘worst’’ case with vmax effectively unlimited
(100trgt/T in Fig. 9), and therefore a(t) taking the form of a step input, the overshoot and the amplitude of the
residual oscillations are small and quickly die out. Going in the other direction, reducing vmax increases the
manoeuvre time, but soon achieves negligible overshoot and negligible residual vibration.

If the actuator speed limit is a physical constraint, then the controller’s vmax can be set at this value, with a(t)
therefore ramping at half this value. For the main part of the motion, with db/dt ¼ da/dt, the actuator and
load will then approach the maximum actuator speed, or db/dt+da/dt, which is the maximum speed it would
have if the system were rigid. The absorbing action will still work without ‘‘hitting’’ the speed limit because the
maximum and limiting value of db/dt to be added to da/dt will also be half of vmax; and there will be even less
residual vibration on arrival at target.

Remarkable as all this may seem, the good news does not end there. The new control strategy is found to be
surprisingly robust and self-adapting. It has no difficulty coping with significant changes in the system. Fig. 10
for example shows the result with the end/load mass increased by three (case 1) and then reduced to one third
(case 2), but without changing a single control parameter from the uniform case of Fig. 8.

The strategy also works for any number of degrees of freedom, large or small. Going for the smallest,
Fig. 11 shows a response for a one mass system. The only adjustment to the controller was to set vmax to
(1.5)trgt/T for the case shown. If preferred, the tiny overshoot and settling can be yet further reduced, while
still getting the mass rapidly to target, by simply reducing vmax a little (cf. Fig. 9 for 3 dof case).

Other such changes in the internal dynamics of the flexible system, which, with other strategies, often
require a complete rethink, are here handled automatically. For example, add internal damping or make the
springs beyond the first one nonlinear (hardening or softening), and the same strategy still works very well,
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Fig. 9. End mass response (solid heavy line) for values of vmax of 100, 1.5, 0.5 & 0.3 times trgt/T. These determine da/dt in Stage 1. a(t)

(solid fine) and b(t) (dotted) also shown for the four cases. For largest vmax, a(t) is effectively a step input.

Fig. 10. Three masses with end mass multiplied by 3 (case 1—grey) and by 1/3 (case 2—black) and controller parameters unchanged from

those of the uniform case (Fig. 8). End point: Actuator: a(t):—— b(t): ??.

W.J. O’Connor / Journal of Sound and Vibration 298 (2006) 1001–10181012
without even the need to re-tune parameters. The only necessary condition is that the system should return to
its initial length at steady state. If part of the system is continuous rather than lumped, again there are no new
control issues to grapple with.

For an ideal actuator, x0(t) ¼ c(t) and r(t) ¼ a(t). But a real actuator will take time to respond, so these
equalities will apply only at steady state. A further extraordinary feature of the new algorithm is that it still
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Fig. 11. Response of 1 dof system with vmax ¼ (1.5)trgt/T.

Fig. 12. Response of end mass of 5 dof system, with non-uniform masses, various dampers between the masses, nonlinear springs, a first-

order actuator, and a simple approximation for a(t) and b(t). End point: Actuator:—— a(t): b(t): ??.

W.J. O’Connor / Journal of Sound and Vibration 298 (2006) 1001–1018 1013
performs well with far from ideal actuators. Extensive testing was carried out with first and second-order
actuators, and in simulation with and without back loading on the actuator from the flexible system dynamics.
It was found that provided the actuator steady-state position error is zero (which is easily achieved) and
provided its bandwidth is about 15% higher than the highest natural frequency of the system, the performance
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deterioration in comparison with an ideal actuator is slight and the end conditions are still achieved. (For a
uniform system of any length, the highest natural frequency is 2on.)

As a final example, illustrating a mixture of such added complexities, Fig. 12 shows the response of a 5 dof
system with nonlinear (hardening) springs; variations of the masses of 1, 0.5, 1, 2, 1; damping between the
masses of 0, 0.25, 0.1, 0.25, 0, 0.05 times critical damping; an actuator modelled as a first-order system of time
constant 1/3on; and a(t) and b(t) approximated simply by Eqs. (16) and (17). These values and the system size
were chosen almost at random: a similar result is obtained for almost arbitrary choices of these variables.
8. Open-ended, varying input control

The main topic of this paper is controlled motion through a desired distance from rest to rest, which is the
most common requirement in practice. But for completeness, it is noted that the strategy outlined above can
be adapted for ‘‘open-ended’’ control, where the final position may not be known beforehand (as happens for
example with hand-and-eye control by an operator or patient); or where the input may be arbitrary or
unpredictable; or where the system may not be at rest initially. With the target position now unknown, the full
benefit of the wave-echo idea is no longer available, but the underlying wave-based strategy still works very
well, retaining most of the featured advantages. Fig. 13 shows an arrangement for this case, in which input
X(s) (or x(t)) is arbitrary. The response to a step input for this arrangement is almost identical to that of the
high vmax curve in Fig. 9: no longer ‘‘vibrationless’’, but still an excellent response.

Finally, Fig. 14 shows the corresponding system based on Eqs. (16) and (17), which leads to a particularly
simple arrangement that still delivers a remarkable performance [20].
9. Discussion

Many configurations in addition to those shown above have been simulated and comprehensively tested, in
all cases giving similarly impressive responses. The same control strategy (or with minor variations of the same
basic idea) has also been demonstrated experimentally on a gantry crane model [13,14], again with excellent
results. In summary, a control system has been developed that proves powerful, flexible, robust, generic, and
that produces near ‘‘perfect’’ results. While the reasoning that led to it may involve subtleties, the final control
system is remarkably simple to implement and very modest in its hardware requirements.

Because of the novelty of the approach, it is difficult to line it up fully with standard control theory. Some
further explanatory comments may however be helpful.
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Fig. 13. The strategy adapted for open-ended control, with arbitrary input X.
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Fig. 14. The same adaptation as Fig. 13, but based on Eqs. (16) and (17).
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9.1. Energy

From an energy perspective, the control system contrives to get energy into the system, necessarily as kinetic
and potential in about equal measures [21], then works to convert it all to kinetic energy, then extracts it all again
involving reconversion to potential and kinetic, arriving at the target at the instant the energy returns to zero.

This method of controlling the energy serves several purposes at once. It provides an energy loading
procedure that packs the energy into the system in an orderly, minimally disruptive way. It is one that is easily
and predictably reversed (‘‘unpacked’’) at the end. It dynamically suppresses vibration. Furthermore, it causes
the system to reveal its entire dynamic signature as seen from the actuator’s perspective. In addition, this
revelation is in precisely the form the actuator needs, without further processing, later to stop the load dead, at
the target, by allowing the remaining energy to flow back out of the system as the load lands on target, and for
a short while afterwards as the system relaxes back to steady state.

9.2. No model needed

As a consequence, little or no system model or system characterisation is needed. Or rather, the system
response is itself serving as the controller ‘‘model’’, observed and recorded for later playback. As the system
size or parameter values change, so will the recorded signal, automatically. No adjustments are needed. The
order of the controller automatically matches the order of the system. In the same way, the controller
automatically takes care of many non-ideal and nonlinear effects, such as spring hardening or softening (other
than in the first spring), or more or less internal damping, linear or nonlinear. (If G is used to determine a and
b, the first spring alone does need to be linear because Eq. (15) assumes linear superposition between x0 and x1.
However, if Eqs. (16) and (17) are used, even the first spring can be nonlinear.)

The symmetry of the strategy also ensures robustness to limitations in the actuator dynamics, to sensing
errors, and to dynamic errors in the determination of a and b. An imperfect dynamic measure of b, and/or
imperfect absorption of b by the actuator, will lead to a small degradation in the performance, seen as slightly
longer absorption and settling times. But the performance degradation is remarkably gradual, and there will
typically be a cancelling error in a, ensuring that Eq. (18) will still apply. This in turn ensures that the overall
strategy still gives excellent vibration control and a steady-state position error no greater than that of the
actuator’s position sensor. (The issue of any static offset error in measuring x1, and therefore in the steady
value of b, will be considered below.)

The only element of ‘‘tuning’’ of the controller (or system ‘‘modelling’’) is to attempt to match the dynamics
of the flexible system close to the actuator. But even here the overall performance degrades remarkably slowly
as the real system values (k1 and m1) depart from the assumed values (used to choose on or Z) in the
controller. Again, this can be partly explained by a cancelling effect between the estimates of a and b, and by
the fact that the only critical requirements are that b dampen the motion while settling to a value equal to a. If
these are fulfilled even slowly, achieving the main goal is always guaranteed.

9.3. Waves

While presented here for lumped systems, wave-based control methods work even better for completely
distributed (continuous) systems, in which, because of finite propagation delays, wave concepts are
unambiguous and more easily measured.

Although the focus above has been on displacement waves, similar results are obtained if one considers force
waves, or velocity waves, or acceleration waves. In much the same way, actuator force, velocity, or acceleration can
be notionally separated and recombined to effect wave-based control. In this way the control strategy can easily be
adapted for use, for example, as a tip force controller, in applications such as robotic machining or assembly.

9.4. Action and reaction

In a perfectly rigid system, the actuator interacts directly and instantaneously with the load. But in a flexible
system, the action and reaction of the actuator force (in the Newtonian sense) are only with the part of the
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flexible system dynamics next to the actuator. Thus the actuator has ceased to interact directly with the load:
all the interaction is mediated by the flexible dynamics. Recognising this, the new control strategy focuses
entirely on the only part of the flexible system the actuator is controlling directly, but uses this focus to recover
control of the remote load over time.

Direct and instantaneous action and reaction between actuator and load in a rigid system are thus replaced by
mediated and time-extended action and reaction in the flexible system. Furthermore, the strategy ensures that the
accumulated ‘‘action’’, a0(t), and delayed system ‘‘reaction’’, b0(t), become equal on completion of the manoeuvre.
If considered as force waves, this might be considered a generalisation of Newton’s third law, with action and
reaction between actuator and load being equal and opposite, but only over time and on reaching steady state.

As the system becomes more and more rigid, the delay between b and a eventually becomes negligible. Then
each can be taken as half the actuator’s value at all times, which nicely recovers Newton III for the actuator-
load interaction, as a limiting case as the flexibility is removed: the actuator now ‘‘feels’’ the load directly, and
action and reaction are once again instantaneously equal. This interpretation is clearest when a and b are
defined by Eqs. (16) and (17) with k1 ¼N ¼ Z, or x0 ¼ x1 for all t.

9.5. Transit time

The new strategy ‘‘settles’’ the system at target within, say, 1 1
2 periods of the fundamental mode of vibration

of the system. (The exact manoeuvre time depends on the exact definition of ‘‘settling time’’.) As a rest-to-rest
manoeuvre time this is very fast.

A point of comparison could be the widely studied time-optimal solution for rest-to-rest motion under a
specified maximum actuator acceleration [16–19]. Such a solution is ‘‘bang–bang’’; that is, the actuator is
always at its maximum acceleration, and the control problem becomes one of specifying the exact switching
times between full positive and full negative accelerations.

This whole issue is beyond the scope of this paper. Generalised comparisons between time-optimal and
wave based strategies are difficult because so much depends on manoeuvre length, system order, system
natural frequencies, and assumed acceleration limits. In addition bang–bang control demands precisely zero
residual vibrations on arrival, whereas the wave-based control can easily tolerate small residual motion, which
it then quickly absorbs. But, in so far as one can claim to be comparing like with like, the wave-based control,
within the same acceleration limit, can achieve a manoeuvre time that is typically no more than 5–10% greater
than the time optimal (using bands of 75% or 71% of final value, respectively, in defining the ‘‘settling
time’’). Yet the wave-based strategy does not need the accurate switching times, nor the high jerk, nor the
accurate system model, nor the complicated problem solving, nor the ideal actuator, all required by time
optimal solutions.

9.6. Environmentally friendly manoeuvring

In general forces are less in flexible systems than in stiff. In flexible systems, the actuator is pushing a softer
system, and does not ‘‘feel’’ the load inertia directly (but over time).

An additional feature here is response to an unexpected external force. When on an experimental rig the
end-point is pushed externally, the absorption process enables the system to ‘‘give’’ gracefully, much like
power-assisted steering. Depending on the application, the controller can then be programmed either to accept
the new position (e.g. in applications such as medical robotics, or with a ship’s crewman manually positioning
a crane’s hanging load), or detect the resulting position error and move to correct it (e.g. in industrial
automation).

The wave absorption feature also makes the system inherently stable. It automatically tends to absorb
external shocks or vibrations, for example due to an unforeseen collision with an obstacle.

9.7. Errors

Under the assumption that the initial and final extensions are equal, the final, tip position accuracy is
determined primarily by the accuracy of the actuator position controller, which in practice can be as good as
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available technology allows. Also, determining the switching time, t1, is straightforward: it is when the
actuator is half way to the target position. In any case, the exact value is not critical.

The only other variable to be measured is x1, the position of mass 1 (or equivalently, the force, f, in the first
spring, or the relative displacement x0–x1). Whereas in simulation no problem arose, in the experimental rigs
even a small zero error in the final measured value of x0–x1, or of f, was found to cause a slow drift from the
target position after arrival. This is due to an integration of the zero error over time, causing b(t) to drift
(cf., e.g. Eq. (17)). However, as this drift affects the entire system, it is readily detectable in the actuator
position sensor. One solution then is simply to turn off the wave absorption soon after arrival at target.
A more elegant solution has recently been developed and will be presented separately.

10. Summary, conclusions and further work

Aspects of the problem of controlling flexible systems have been thought about in new and fruitful ways.
These lead to a new control algorithm that performs extraordinarily well. It easily moves a load from point to
point, rapidly, yet with negligible residual vibration and negligible overshoot and zero steady-state error. It
moves the load at close to the actuator velocity (the ideal), in one controlled motion, without exciting load or
system vibrations unnecessarily. The control strategy is robust, applicable to a wide variety of problems,
requires minimal system information, little computational overhead, and is very tolerant of limitations in the
actuator dynamics. Sensing requirements are also minimal, and all sensing is done at, or close to, the actuator,
which is normally the ‘‘clean’’ and accessible part of the system.

Modelling errors hardly feature. System changes are automatically accommodated. The order of the
controller automatically matches that of the system, and explicit information, for example about locations of
poles (or natural frequencies and damping ratios of modes), is not needed. The real system is also the
controller’s main ‘‘computer’’, as it ‘‘calculates’’ the exact echo profile, which the controller simply observes
and records for later use, most effectively.

The strategy involves minimal dynamic decomposition. Where other approaches focus on n state variables
(two for each mass), or on modal decomposition (with or without modal truncation), or on separation into
rigid-body and flexible modes (with subsequent concerns about mutual coupling between them), here only the
actuator motion is decomposed, and then into only two notional components over time, based on how the
system is responding. Then, using a dynamic feedback of one of these components, in a computationally
simple scheme, the entire motion becomes one, controlled, almost vibrationless, sweep of the load from rest to
rest.

All aspects of the new strategy merit further analysis and investigation. More formal proofs are needed for
some of the results. This work is well under way. Work is also advanced on applying and adapting the wave
ideas to more complex systems, including systems with multiple actuators, whether in series or in parallel,
systems undergoing flexural (beam-like, lateral) vibrations, and systems with significant external forces active
during manoeuvres. An adaptation of the wave-based idea is also proving very effective in achieving an
actively stabilized platform on a randomly moving base.

In summary, while wave-based control does involve some subtleties and unconventional notions, it is
essentially simple, intuitive, powerful and easy to implement, and is proving adaptable to an increasing range
of application areas.
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